
` 

 

Running Head: Analyses of response times 

 

 

 

 

Response times identification tools for cognitive processes as at the final decision stage 

 

 

 

Mario Fifić, Joseph W. Houpt & Jörg Rieskamp 

 

 

Send correspondence to: 

Mario Fifić 

Grand Valley State University 

One Campus Drive 

2224 Au Sable Hall 

Allendale, MI 49401 

616-331-5061 

Fifićm@gvsu.edu 

 

Keywords: Response Times; Decision Making; Memory; Heuristics, Hierarchical Bayesian 

Inference, Systems Factorial Technology 

WORD COUNT: 5321 (MAIN TEXT) 

 

 

 

 

mailto:fificm@gvsu.edu


` 

One central aim of contemporary research in cognitive psychology is the identification of 

the cognitive mechanisms engaged in judgment and decision making. In contrast, standard 

economic approaches to decision making have followed an axiomatic approach, according to 

which people’s choice can be described by expected utility models if their choice obey various 

choice axioms (e.g. von Neumann & Morgenstern, 1954), without aiming for understanding the 

cognitive process that leads to decisions (cf. Rieskamp, Busemeyer & Mellers, 2006). This 

research has also been called an as if approach, which treats the psychological processes behind 

decision making as a black box (see Gigerenzer & Selten, 2001). Although the “as if” approach 

can be quite successful in describing people’s choices in various domains it could be limited when 

making predictions for future and independent behavior not used for fitting a model, because it 

lacks the understanding of the causal mechanisms of people’s behavior. Contrary to the as-if 

approaches recent approaches in cognitive psychology, behavioral economics and decision 

neuroscience of studying judgment and decision making have led to advances towards unpacking 

the black box. Understanding the underlying cognitive processes of human decision making allows 

to explain when and why people violate important choice axioms and should ultimately lead to 

better independent, out of sample predictions.  

Many models of decision making create strong assumptions about the processes that lead 

to a decision. Specifically, these models make assumptions about the fundamental cognitive 

processes: (a) type of information search, that is how attribute information is searched for (for 

example- serial or parallel), (b) scope of information search, that is when this attribute information 

search is stopped (limited search vs. all information search), and (c) type of information 

integration, that is how the acquired attribute information is integrated to reach the decision 

(intendent or dependent analysis of attributes).  
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 Current Approaches to identification of processes involved in decision making  

 

 Perhaps one of the most effective approaches to discovering how decision makers use 

information is the process-tracing approach, which includes both overt and covert methods. Overt 

process tracing methods rely on directly observable behavior during the decision making process. 

Interactive information displays (Payne, 1976), mouslab (Payne, Bettman, & Johnson, 1993), eye 

tracking (Russo & Rosen, 1975; Lohse & Johnson, 1996) and retrospective verbal protocols 

(Ericsson & Simon, 1984) are all types of overt process-tracing methods used to investigate 

information search during decision making (Schulte-Mecklenbeck, Kuhberger, & Ranyard, 2011). 

These methods can indicate what information people search for, the order in which they search, 

and the amount of time they devote to each information source. These data can indicate whether 

assumptions about the fundamental cognitive processes hold and provide strong constraints on 

models of the decision process (e.g., Bröder, 2000, 2003; Maule, 1994; Newell & Shanks, 2003; 

Newell, Weston, & Shanks, 2003; Payne, Bettman, & Johnson, 1988, 1993; Rieskamp & Hoffrage, 

1999, 2008). Despite the clear value of these overt methods (Svanson, 1979), it is possible that 

they provide less constraint on how the decision is made once the decision-maker has collected 

information. Furthermore, some researchers have suggested that these overt methods are 

particularly vulnerable to participants being aware of the manipulations and adapting their 

performance accordingly (Reisen, Hoffrage & Mast, 2008). 

 Covert process tracing methods, in contrast, rely on indirect inferences from the observed 

behaviors about the cognitive processes. Examples of covert methods are those that rely on 
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collected choice responses, scaled choice preferences, and/or response times (e.g. Busemeyer & 

Townsend, 1993; Nosofsky & Palmeri, 1997; Ashby, 2000; Glockner 2009). Normally, any of 

these observations could not be directly connected to underlying cognitive process. However, by 

using specific experimental designs (input), researcher can collect the appropriate response data 

(output) to constrain the possible models of the decision making process. The input-output analysis 

is achieved by the means of model testing. The best model of underlying cognitive processes is 

inferred from likelihoods of the observed input-output relationship across the candidate models, 

or within the Bayesian approaches, the posterior probability of a decision making models given 

the input-output patterns. 

 Covert and overt methods are in many ways complementary. The main limitation of the 

covert input-output methods is that they provides minimal information about pre-decision stage 

(Payne, Braunstein & Carroll,1978; Svenson,1979) where the overt methods are strongest, and 

covert methods can be informative about the final decision stage, the stage in which overt methods 

are the least informative. This final decision stage is considered inaccessible to introspection. 

Importantly at this stage, many cognitive factors could significantly affect the decision, 

particularly memory storage and retrieval, perceptual context, attention, and others. 

 Many researchers have applied the input-output model analyses of choices to examine this 

final decision stage. Although there have been notable successes progress has been stymied by the 

problems with model identifiability: several classes of different models predict the exact same 

choice patterns. The strategic plan to avoid choice model mimicking has been consider in several 

publications (e.g. Rieskamp & Hoffrage 1999, 2008; Broder 2000; Lee & Cummins 2004) 

 In addition to choice patterns, response time analysis is another covert approach that can 

offer insight into the cognitive processes underlying decision making (e.g., Busemeyer & 
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Townsend, 1993). Sophisticated modeling based on response times dates back to the early days of 

experimental psychology in the latter half of the 19th century starting with the work of Donders 

(1868) and Wundt (1880), and flourished with the development of the information-processing 

approach (e.g., Sternberg, 1966, 1969). When combined with choice patterns, response times have 

led to a number of important advances in cognitive psychology (e.g., Ashby, 2000; Ashby & 

Maddox, 1994; Heath, 1992; Lamberts, 1998, 2000; Link, 1992; Nosofsky & Palmeri, 1997; 

Ratcliff, 1978; Smith, 1995, Donkin, Nosofsky, Gold, & Shiffrin, 2013; Little, Nosofsky, Donkin, 

& Denton, 2013; Starns & Ratcliff, 2010; Bogacz, Wagenmakers, Forstmann, & Nieuwenhuis, 

2010).  

 In the present chapter, we will not discuss the response time predictions that can be derived 

from all the models mentioned above. Instead, for illustration purposes we will only focus on how 

response times can be used to test two prototypical inference strategies suggested by the strategy 

approach (Gigerenzer, Todd, & the ABC Research Group, 1999; Payne et al., 1993). This 

illustration, however, can be generalized to a variety of decision making models. The strategy 

approach assumes that people are equipped with a repertoire of different strategies to make 

inferences. 

 

Response time analysis for testing process model of probabilistic inferences   

   

 Several research publications used the analysis of response times in examining 

probabilistic inferences.  Bergert and Nosofsky tested a generalized, lexicographic take-the-best 

and a generalized weighted-additive (WADD) model (see Bergert & Nosofsky, 2007, for details). 

As demonstrated by Bergert and Nosofsky (2007), the resulting generalized model was able to 
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make identical choice predictions, so that choice behavior alone does not allow to differentiate 

between the two models.  Choice data was not sufficient to discriminate between the two models.  

However, response time data provided an additional source of information for testing the models; 

indeed, results of response time analysis largely supported take-the-best over WADD.  

 Bröder and Gaissmaier (2007) re-examined five of Bröder and Schiffer’s (2003) 

experiments. They split the participants into four groups with identical strategy classifications on 

the basis of their observed inferences. Bröder and Gaissmaier computed the median response time1 

and found that the response times followed the predicted pattern and supported the assumption of 

sequential search: Participants classified as using take-the-best showed an increase in response 

time depending on the position of the best discriminating cue, while this increase was much less 

pronounced for participants who were classified as using WADD or Tally. In sum, the response 

time analysis results converged to the previous conclusions of the previous choice behavior 

analyses, and strongly supported the main results.  

   Persson and Rieskamp (2009) performed a response time analysis to confirm the 

results of their strategy classification analysis, similar to Bröder and Gaissmaier (2007). Overall 

their results supported the strategy-based approach in decision making, in which decision maker 

adapts to the constraints in the environment, including the factors such are: time pressure, 

information search costs, the nature of feedback, and presentation format of information. 

 One of the main questions posed by this research was whether the prevalence of take-the-

best in Bröder and Schiffer (2003) was induced by the experimental requirements. For instance, in 

Bröder and Schiffer’s (2003) experiments, participants were given the rank order of cue validities, 

                                                        

1 Analysis of median RT rather than mean RT can offer more robust results because RTs are often skewed.  Extreme outliers may 

also be an issue for RT analysis, which is to some degree mitigated by the use of medians.  For distributional analyses, such at the 

SIC described below, outliers are even less of an issue than for median based approaches.  When mean RT is the statistic of 

interest, we recommend a contaminant model such as that presented in Craigmile, Peruggia, & Van Zandt (2010). 
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which may have fostered the selection of take-the-best. In contrast, if participants had to learn the 

validities of the cues, this might lead them to use other inference strategies, such as Tally, which 

does not require any cue validities.  This issues was addressed in the later study (Perssson & 

Rieskamp, 2009) using response time analysis: the results indicated that the non-compensatory 

TTB strategy and compensatory (WADD) strategy are dependent on the type of decision feedback 

provided.  

 The reported studies illustrate how a response time analysis can be used to validate the 

inference that had been made on a pure analysis of people’s choices. The goal of the reported 

response time analyses was to find convergent evidence for the processes assumed to underlie 

memory-based probabilistic inferences. For memory-based decisions monitoring external 

information search processes cannot be applied. Therefore, response times were analyzed to 

validate the idea of sequential cue search in inference processes and as an independent source of 

support for the outcome-based strategy classification method. In this manner, Bergert and 

Nosofsky (2007), Bröder and Gaissmaier (2007), and Persson and Rieskamp (2009) tried to 

achieve the goal that models should be testable with different kinds of data (e.g., Jacobs & 

Grainger, 1994).  

  

Potential limitations of the traditional RT analysis and the solution 

 

 Although response times analysis improves inferences over the analysis of choice 

responses alone, there can still be significant model identifiability problems, even with simple 

decision making systems. For example, one fundamental question in understanding the decision 

stage is whether individuals consider each piece of evidence one-at-a-time (in series) or all at once 
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(in parallel). Despite a clear conceptual distinction between serial and parallel processing, serial 

and parallel systems can exactly mimic each other across a wide range of empirical settings 

(Townsend & Ashby, 1983; Townsend & Wenger, 2004, p. 1011). One reason this mimicking can 

occur is that slow-downs or speed-ups across conditions can be explained equally well by 

differences in temporal structure (i.e., parallel versus serial) as by differences in processing 

efficiency (e.g., Townsend, 1969, 1971, 1972; Townsend & Ashby, 1983).  

 In sum, several approaches have been employed created to answer the questions about the 

organization of cognitive processes in decision making. One of the most challenging issues faced 

was model mimicking. Different models are able to predict the same outcomes either at the choice 

levels or at the response time levels. This poses a serious challenges to discriminating among 

candidate descriptions of the decision making process.  

 To overcome the model mimicking, and to unlock more powerful ways of decision making 

model identification, we propose a synthesis between the systems factorial technology (SFT) with 

the traditional decision making analysis.  

 As a preview, to show how SFT deals with the response time mimicking a simulations 

study was conducted using two different decision strategies. First we simulated a response time 

output of TTB decision making model in a situation in which stopping can occur on the first 

discriminating cue. Second, we simulated the coactive model – one of the possible candidate 

variants for the cognitive model underlying WADD decision strategy. In the coactive model 

information from all cue attributes is processed in parallel fashion. The two simulated models 

differ critically on all the three fundamental cognitive properties. However, the simulation results 

showed that the two models can perfectly mimic each others response times (Figure 1 A). The 

TTB and coactive models are able to generate the identical outputs – showing that the response 
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times distributions of the two model predictions completely overlap (Figure 1 A). Nonetheless, we 

see that data from the same models with the same parameterization reveals quite distinct diagnostic 

patterns of response times when analyzed using SFT (shown on the right Figure 1 B). The response 

time data function for the TTB model shows almost flat – randomly hovering around zero value, 

while the coactive WADD model shows an S-shaped function. The SFT approach thus avoids the 

response time mimicking problem and provides a sufficient model discriminability power to 

distinguish between the two different decision making strategies.   

 In the following section the SFT methods will be described with more details,  and 

information would be provide about how SFT could be applied in the classical probabilistic 

inference task.  
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Figure 1: (A) A simulated response time distributions for two different models WADD and TTB.  

The two distributions almost perfect overlap, implying that at this level two models can’t be 

differentiate in the output. Both models’ choice accuracies were also equal (p=.999) meaning 

that both models achieved high decision accuracy.  (B) When the SFT analyses was applied on 

the same data from A, we can see that the two models generated clearly distinct SIC signatures, 

thus implying that the models can be now differentiate in the output.    

 

The systems factorial technology methodology 

 

Systems factorial technology (SFT) is a suite of methodological tools aimed at discovering 

the fundamental properties of cognitive operations by the decomposition of output response time 

(Townsend & Ashby, 1983; Townsend & Nozawa, 1995; also see the related approach 

Schweickert, Fisher & Sung, 2012; Schweickert, Giorgini, & Dzhafarov, 2000). The SFT analysis 

provides rigorous tests and mathematical tools for discerning the fundamental properties of the 

cognitive processes underlying many decision making models:  

1) Type of information search: (serial, parallel or coactive) 

2) Scope of information search (limited vs. total, that is self-terminating vs. exhaustive) 

3) Type of information integration (Process (in)dependence, whether cognitive processes 

are independent or dependent of each other) 

4)  Capacity of the system under investigation, that is, amount of work done by the 

decision making system, when information load increases (limited, unlimited or 

supercapacity).  

 We include a necessarily brief overview of the approach below. For additional details, there 

are several tutorials on SFT (Fific & Little, 2016; Altieri, Fific, Little & Young, 2016; Harding et 

al. 2016; Houpt, et al. 2014). In a nutshell, SFT requires the factorial manipulation of the time 

spent considering each of the sources of information available. We refer to the manipulations that 
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slow down or speed up the processing of each source as “stretching factors”. Critically, each 

stretching factor should influence the processing of a specific a target source of information and 

not others (selective influence). 

Consider a generic study in which a choice must be made between two options based on 

two attributes. One stretching factor should influence the speed of with which an individual 

evaluates attribute 1, with the two levels: Fast (F) for faster evaluation and Slow (S) for slower 

evaluation. The second stretching factor is the same for attribute 2. Stretching factor 1 should not 

affect the processing of attribute 2 and stretching factor 2 should not affect the processing of 

attribute 1. A factorial combination of the levels of each stretching factor, yields four experimental 

conditions: SS, SF, FS, and FF. Here, each letter indicates whether the evaluation process was 

stretched in time or not. For example, SF means that the first attribute evaluation was stretched 

thus slow, and the second attribute evaluation was not stretched - thus fast. We denote the 

collection of response times in each factorial condition with RTSS, RTSF, RTFS and RTSS.  

The factorial design uses the stretching effects that are conducted on at least two (decision) 

processes of interest, to investigate the interaction of the stretching effects. In the SFT approach 

the interaction analysis provides the most diagnostic information about the organization of 

underlying processes. Two SFT statistics are generated from the interaction test analysis.  

 

Double factor manipulation: Stretching two processes.  

The orthogonal factors can be used to calculate the interaction contrast, much like in 

factorial ANOVA. The first interaction test can be expressed as the difference between stretching 

effects on response times. Using the M.. to indicate the mean time across the collection RT.., the 

mean interaction contrast (MIC) is given by: 
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MIC = (MSS – MSF) – (MFS – MFF).          

 

 Additional diagnostic information can be gleaned using survivor functions. Completely 

analogous to deriving the mean interaction contrast (MIC), one can compute the survivor 

interaction contrast (SIC). The survivor function describes the probability that a response time will 

occur after a given time and is one minus the more familiar cumulative distribution function. By 

replacing the mean RTs for each condition by the survivor function, at each value of t, one 

computes: 

 

SIC(t) = [SSS(t) – SSF(t)] – [SFS(t) – SFF(t)].      

 

Both the MIC and SIC provide powerful information for exploring the fundamental 

properties of the decision making process. Figure 2 shows the correspondence between MIC and 

SIC signatures (middle), and cognitive processes that could be used to make a decision model (left-

hand side), and the interpretation of the signatures in terms of decision making model properties 

(right-hand side).  

SFT has been used in the context of various cognitive tasks and domains: perceptual 

processes (e.g., Eidels, Townsend, & Pomerantz, 2008; Fific, Nosofsky, & Townsend, 2008; 

Johnson, Blaha, Houpt, & Townsend, 2010; Townsend & Nozawa, 1995; Yang, 2011; Yang, 

Chang, & Wu, 2013), visual and memory search tasks (Egeth & Dagenbach, 1991; Fific, 

Townsend, & Eidels, 2008; Sung, 2008; Townsend & Fific, 2004; Wenger & Townsend, 2001; 

2006), face perception tasks (Fific & Townsend, 2010; Ingvalson & Wenger, 2005; Blunden, 

Wang, Griffiths, & Little, 2014), and classification and categorization (e.g., Fific, Little, & 
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Nosofsky, 2010; Little, Nosofsky, & Denton 2011; Little, Nosofsky, Donkin, & Denton, 2013). 

The SFT tools were recognized as potentially the most important and promising methodology in 

understanding cognitive processes (Greenwald, 2012), and also invited to the domain of decision 

making as a promising new direction in model testing (Busemeyer, 2017; Gaissmaier, Fific, & 

Rieskamp, 2011).  

 

Figure 2: The correspondence among cognitive models (left), SFT signatures (middle) and the 

inferred decision process structure (right). 

 

 

Applying Systems Factorial Technology to the probabilistic inference task 

 

 In order to apply SFT we follow the three-step instructions described in (Fific & Little, 

2016): 
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(1) Identify a processing model(s) of interest that will be tested in terms of its fundamental 

cognitive processes: processing order, stopping rule, and process interdependency.  

(2) Determine the task structure, particularly the stretching manipulations. 

(3) Collecting RT data, analyze the corresponding response distributions using MIC and SIC, and 

interpret.  

 

STEP1: Identify processing models of interest, and the SFT model predictions 

 

 A first prototypical strategy that we consider is a noncompensatory lexicographic one, of which 

the take-the-best (TTB) heuristic (Gigerenzer & Goldstein, 1996) is an example. The strategy 

predicts limited and serial processing of information. Take-the-best assumes that people compare 

objects cue-wise (cue=attribute), starting with the most valid cue with regard to predicting the 

criterion, and stop as soon as one cue is found that discriminates between the two objects. That is, 

a person using take-the-best first searches for the most valid cue, which is the best discriminating 

cue between two objects on a criterion. If this cue discriminates, the person does not search further 

and makes a decision. Otherwise, searching for cues continues until a discriminating cue is found. 

Therefore, when take-the-best finds the first (i.e., most valid) discriminating cue, it stops searching 

and makes a decision based on that cue alone, while all the remaining cues are ignored. If TTB 

stops on processing of the first discriminating attribute then one can expect to observe MIC=0 and 

flat SIC, as shown in Figure 2 A (serial self-terminating model). If TTB stops on the second 

discriminating attribute, after processing the first non-discriminative, then one can expect MIC=0 

and S-shaped SIC, as shown in Figure 2 B (serial exhaustive model). In contrast, compensatory 

strategies, such as the weighted additive strategy (WADD), assume that all available information 
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is processed in series (e.g., Gigerenzer & Goldstein, 1996; Payne et al., 1988). WADD assumes 

that each cue is weighted (usually by the validity of the cue), and that a decision maker calculates 

the sum of all weighted cue values when choosing between two alternatives. A decision maker 

chooses the alternative with the largest weighted sum. WADD needs to process all attributes, so it 

could be expected that MIC=0 and SIC function should be the form of Figure 2 B (serial exhaustive 

model), regardless of the position of the discriminating cue attribute. Another variants of 

compensatory strategies are Bayesian inference models (Naïve Bayes or NB). A Bayesian 

inference that is built into a connectionist processing model assumes that all available information 

is processed in parallel (cf. Griffiths, Chater, Kemp, Perfors, Tenenbaum, 2010, Glöckner, Hilbig 

& Jekel, 2014). In these cases one can expect to observe MIC<0 and negative SIC function, as 

shown in Figure 2 D. However if the processing of cue attributes are dependent of each other, then 

one can expect to observe the coactive signature that is MIC>0 and SIC has a mainly positive 

shape with a small negative initial blip, Figure 2 E (the exemplar model e.g. Fific, Little, Nosofsky, 

2010; Fifić & Townsend, 2010). The attribute dependencies can formed either by creating a 

learning environment in which a decision maker learns statistically dependencies between the 

options’ attributes; and/or could be created in the parallel network systems which assigns conjoint 

weights to the attribute representations. Finally, some decision making systems can benefit from 

parallel self-terminating processing, so called horse-race models (Marley & Colonius, 1992; Pike, 

1973; Townsend & Ashby, 1983; Van Zandt, Colonius, & Proctor, 2000), in which the first 

discriminating attribute can terminate the parallel information search and lead to final decision, as 

shown in Figure 2 C. Taking altogether, we could see that among several dominant decision 

making models the critical distinguishing cognitive properties are the processing order, the extent 

of processing, and processing integration structure, all of which could be diagnosed using SFT.  
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STEP 2. Task selection and stretching manipulation 

  

 Task selection: In a probabilistic inference task, participants have to compare objects and 

decide which objects scores higher based on several attributes (cues) of the objects. For example, 

assume that participants must decide which of two bugs is more poisonous based on their legs and 

body texture (Bergert & Nosofsky, 2007). Many researchers have modeled this choice process as 

probabilistic inference (e.g. Dougherty, Gettys, & Ogden, 1999; Gigerenzer & Goldstein, 1996; 

Hammond, 1990; Juslin & Persson, 2002; Lee & Cummins, 2004; Rieskamp, 2006; Rieskamp & 

Hoffrage, 1999, 2008; Payne et al., 1988; Rieskamp & Otto, 2006). These include, among others, 

connectionist models (Gluck & Bower, 1988), exemplar models (Juslin & Persson, 2002), 

sequential sampling models (Lee & Cummins, 2004; Wallsten & Barton, 1982), and procedural 

strategies (Gigerenzer, Todd, & the ABC Research Group, 1999; Payne et al., 1993). Furthermore, 

people may use different strategies based on whether both attributes are necessary for decision 

making (compensatory environment) or a single attribute is sufficient (non-compensatory 

environment). 

 Generally speaking, when viewers approach this task they could check the attributes in 

series (e.g., legs, then bodies) or examine all attributes of a bug before moving on to the other. At 

this point, we focus our description on testing attribute-wise search, although the design and 

analysis also apply to option-wise search. Hence, our question can be framed as how a decision 

maker processes the attributes and combines them to make a decision? To answer the question we 

can design the experiment in two phases: the first phase was a learning phase, with two 

environments: Compensatory and non-compensatory, and three cues legs, antenna and body. On 
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each trial two randomly selected bugs were displayed simultaneously next to each other, separated 

by a fixation point. The task was to decide which bug was more poisonous as quickly as possible 

without making errors. Bug images were created by combining three cue attributes (legs, antenna 

and body). Probabilistic feedback was provided and participants were informed that the feedback 

would help them to learn to recognize poison levels of bugs.  

Stretching manipulation: In the second test phase, the SFT methodology was applied. The 

third cue (antennae) was covered using a non-transparent mask leaving two cue attributes for 

inspection (body and legs). The stretching manipulation, that is speeding up or slowing down the 

processes of interest (S=slow, F=fast), was achieved by visually masking attributes: In this case, 

we used semi-transparent leaves to occlude attributes (see Figure 3). Cue stretching (S, F) was 

factorially combined across the factor cues (factor cue 1 body and factor cue 2 legs), leading to the 

four conditions: SS, SF, FS and FF (Figure 3). The indices on the left indicate saliency level of 

cue 1 (body) and the indices on the right indicate saliency of cue 2 (legs). Thus, “SF” indicates a 

condition in which two simultaneously displayed bugs had their cue 1 (body) semi-transparently 

masked, and the cue 2 unmasked (legs). No feedback was provided in the test phase. Otherwise, 

the task instructions were the same as the training phase; decide which bug is more poisonous as 

rapidly as possible without making errors.  

 



Analyzing response times 

 

1 

 

 

Figure 3: Demonstration of SFT stretching when the most poisonous bug1 is compared to the 

least poisons bug4. The left column processing. F stands for “fast” and S stands for “slow”. 

The mask is used to slow processing. 

 

 

STEP 3. Face Validity of the SFT in testing probabilistic inference task: Simulation study.  

 

 We use results from the two subjects in a probabilistic inference task to demonstrate 

the application of SFT. One subject is tested in a non-compensatory condition and another one 

in a compensatory condition. Recall that the Naïve Bayes and WADD predict that participants 

will use an exhaustive strategy, with Naïve Bayes normally being not so strongly associated 

with parallel or coactive processing and WADD associated with serial processing, in both 

environments. In contrast, the TTB strategy predicts a serial first-terminating process in the 

non-compensatory environment and a serial exhaustive process in the compensatory condition. 

A non-zero MIC would rule out serial processing, hence a non-zero MIC in either environment 

would rule out TTB. A change in MIC sign between the compensatory and non-compensatory 

conditions, indicating a switch between exhaustive and first-terminating decision-making, 

would rule out standard versions of Naïve Bayes and WADD models.  

 For both subjects (in the compensatory, and the non-compensatory conditions) the 

posterior probabilities favored an MIC equal to zero (p>.75). We applied follow-up SIC 

SS

SF

FS

bug1 vs. bug4

FF

Factorial 

Conditions

c1 c2 Criterion 
(poisonous) 

bug1 1 1 4

bug2 1 0 3

bug3 0 1 2

bug4 0 0 1
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analysis at the individual level: In the compensatory condition three participants had 

significantly negative SIC values, which along with the MIC result indicates serial-exhaustive 

processing (Figure 4). In the non-compensatory condition the subjects had no significant 

deviations from zero in the SIC, indicating serial first-terminating processing (Figure 4) The 

pattern of results is exactly that predicted by TTB and the zero MIC with a lack of SIC 

deviations from zero in rule out WADD and Naïve Bayes models. Thus, this approach has 

allowed us to conclude that these participants were using a one-at-a-time (serial) strategy and 

stopped assessing information once they had enough to make a decision (self-terminating).  

 

 

Figure 4: The two selected SIC functions (bottom row). The left compensatory SIC function indicates 

serial exhaustive processing across attributes (for comparison see Figure 2 B); the right non-

compensatory SIC function indicates serial self-terminating processing, and is statistically “flat” (for 

comparison see Figure 2 A).  

   

Collecting more subjects’ data would allow for making inference about decision-making 

strategies both at the group and individual levels.  

 

Conclusions 

 In this chapter, we argued that response times are a valuable resource for testing process 

models of judgment and decision making. Cognitive models of decision making imply different 

types of information processing that can lead to a decision. One can differentiate three very 
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general aspects of information processing: the scope of information search (self-terminating 

vs. exhaustive) and the type of information processing (serial vs. parallel), and the type of 

information integration.  These three aspects can be found in different combinations in a variety 

of models. Despite different processing assumptions, however, these models often cannot be 

distinguished by the decisions they predict, leading to an identification problem (cf. Anderson, 

1990).  

Bergert and Nosofsky (2007) were able to distinguish between two different models 

based on mean response time analyses. These models were identical in their choice predictions 

but very different in the spirit of the underlying process assumptions. Moreover, the response 

time analyses of both Bröder and Gaissmaier (2007) and Persson and Rieskamp (2009) 

supported the assumption of self-terminating, serial cue search in memory-based decision 

making, for a substantial proportion of their participants. The results demonstrate the 

usefulness of response time analyses as a method for tracing processes that are not directly 

observable. The analysis of response times can therefore provide valuable information on 

whether the interpretations drawn from an analysis of participants’ decisions alone appear 

valid.  

 Unfortunately, even response time analysis is prone to model mimicking. We showed 

two very distinct decision making models could predict identical response time distributions. 

This illustrates that under certain conditions, models under investigation cannot be clearly 

identified even using both choice accuracy and response time analyses. To address these 

limitations we demonstrated the SFT methodology which provides an assessment of the type 

of information processing (serial vs. parallel), the scope of information search (self-terminating 

vs. exhaustive), and type of information integration (process dependency). SFT could be used 

to identify different decision-making strategies, such as non-compensatory strategies and 

compensatory strategies. As we could see, the SFT approach requires adding more 

experimental conditions to the original decision task (such as in the example above in a 
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probabilistic inference task).  The experimental manipulation required using response time 

stretching manipulations, so that researchers can selectively influence a processing time of each 

decision attribute. As we could see the SFT stretching manipulation, would lead to the output 

analysis in terms of patterns of either mean response times (MIC) or survivor function (SIC), 

so that a distinct decision making model would leave different output patterns of both MICs 

and SICs. These diagnostic patterns could provide needed diagnostic edge to distinguishing 

between the models of interest. Thus the SFT approach can be seen as a methodological 

extension to standard task (Greenwald, 2012).  

 The key to SFT is the selective influence of the different information sources.  Other 

traditional approaches to decision model testing might also benefit from these manipulations 

and be combined with the stretching manipulations. For example, the typical approach to 

examining decision making processes is to manipulate the distribution of attribute validities 

for options that are considered in decision making. Researchers typically create two different 

environments, hoping to encourage different decision strategies. In a compensatory 

environment, compensatory strategies would be appropriate, in which a low value of an 

attribute of an option can be compensated by a high value on a different attribute. A typical 

representative would be weighted additive strategy (WADD). In a non-compensatory 

environment, strategies that do not allow attribute values on one attribute to compensate for 

low values on another attribute could be sufficient. Take-the-best strategy (TTB) is a typical 

example of non-compensatory strategy. In practice, to identify TTB and WADD decision 

making models, one has to compare the response outcomes between the two environments. So 

in the traditional approach analyzing response data from only one environment doesn’t provide 

sufficient and necessary conditions for decision model comparison.  

 The required SFT application can be done orthogonal to the manipulation of attributes 

validities. Selective stretching of the cognitive processes are all that is required for SFT. The 
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time stretching manipulation (Fific & Little, 2016) could be defined completely independent 

from the attribute validities, which in turn gives more degrees of freedom for SFT application. 

 Response time analysis is a fruitful endeavor that can increase understanding of 

cognitive processes underlying peoples’ judgments and decisions. Researcher are encouraged 

to take advantage of the converging principal in process tracing, by employing not only 

different analyses but also complementary approaches to analysis underlying cognitive process 

in decision making. One such an approach could be SFT that could add to the informativeness 

of other process tracing methods such as eye tracking, mouslab, and/or interactive information 

displays methods.   
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RECOMMENDED READING 

Bröder & Gaissmaier (2007) showed how response time analyses can provide convergent 

evidence for assumptions about information search in memory-based decision 

making.  

Persson & Rieskamp (2009) tested an exemplar-based approach to predicting people’s 

inferences from memory against the strategy-based approach and used response time 

analyses to confirm strategy classifications. 

Houpt  & Fifić  (2017) defined the mathematical tools for combining SFT technology with 

the hierarchical Bayesian inference.  

 

Fifić & Little (2017) provided a tutorial how SFT methodology can be applied to different 

experimental paradigms and research domains.  
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